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ABSTRACT
This report uses Monte Carlo simulations to connect stochastic single-molecule and ensemble surface adsorption of molecules from dilute
solutions. Monte Carlo simulations often use a fundamental time resolution to simulate each discrete step for each molecule. The adsorption
rate obtained from such a simulation surprisingly contains an error compared to the results obtained from the traditional method. Simulating
adsorption kinetics is interesting in many processes, such as mass transportation within cells, the kinetics of drug–receptor interactions,
membrane filtration, and other general reaction kinetics in diluted solutions. Thus, it is important to understand the origin of the disagreement
and find a way to correct the results. This report reviews the traditional model, explains the single-molecule simulations, and introduces
a method to correct the results of adsorption rate. For example, one can bin finer time steps into time steps of interest to simulate the
fractal diffusion or simply introduce a correction factor for the simulations. Then two model systems, self-assembled monolayer (SAM) and
biosensing on the patterned surface, are simulated to check the accuracy of the equations. It is found that the adsorption rate of SAM is
highly dependent on the conditions and the uncertainty is large. However, the biosensing system is relatively accurate. This is because the
concentration gradient near the interface varies significantly with reaction conditions for SAMs while relatively stable for the biosensing
system.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0064140

INTRODUCTION

Molecules in diluted solution are moving constantly and ran-
domly (Fig. 1). When still, a major contributor of this motion,
diffusion, is fundamentally relevant in many fields such as cell
biology, biosensing, separation, fluidic dynamics, reaction kinetics,
catalysis, and batteries.1–9 The ensemble kinetics of diffusion has
been summarized by Fick’s laws of diffusion.2,3 For example, the dif-
fusion of materials in a diluted solution from a high-concentration
reservoir into a tubing space forms a time- and space-dependent
concentration gradient function C(x, t)2,3 derived from the heat
equation formulated by Joseph Fourier in 1822,3

∂C(x, t)
∂t

=
∂

∂x
[D(x, t)

∂C(x, t)
∂x

], (1)

where t is time (unit s), x is the distance away from the interface
(m), C(x, t) is the concentration gradient (molecules m−3), and

D(x, t) is the time- and-space-dependent diffusion coefficient
(m2 s−1), a constant under many conditions. Note that these units
are for the 1D simplification of a 3D diffusion when the diffusions of
the other two dimensions do not matter. For a real 1D diffusion, C
will have the unit molecules m−1.

The special case with constant D has a formal analytical
solution,2

C(x, t) =
1

√

4πDt
e−

x2

4Dt , (2)

where C(x, t) (unit mol/m3) is the concentration of the molecules
at space x (m) from origin x = 0 and time t from initial time t = 0
when all molecules are at the origin. Equation (2) is a 1D Gaussian
distribution function with the standard deviation σ =

√

2Dt and is
normalized to the unit in all x spaces, i.e., at any giving snapshot of
t, A∫

∞
−∞C(x, t)dx = 1 (mol), where A = 1 is a unit area (m2).
Statistically, connecting the ensemble diffusion with single-

molecule diffusion probability function using the ergodic principle,
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FIG. 1. A brief early history of the random walk theory of diffusion and adsorption.
The left shows the fractal nature (self-similarity over time) of diffusion and the right
shows selected early events.

this concentration profile represents the probability density function
(PDF) of a single molecule diffusing from the origin into space over
time. It is a very important achievement in history that Stokes and
Einstein come up with a single-particle random walking model to
predict the diffusion constant of particles doing Brownian motion.10

The diffusion constant D for molecules, colloids, proteins, or much
bigger particles in a solution can be estimated by the Stokes–Einstein
equation,11,12

D =
kBT
6πηr

, (3)

where kB is the Boltzmann constant, T is temperature, η is the viscos-
ity of the solution, and r is the radius of the particle. For a molecule
approximated to a small ball, r (m) can be estimated from the molec-
ular weight Mw = 4

3 πr3ρ (kg), where ρ (kg/m3) is the density of the
neat molecule in the solid or liquid state (all in SI units).

An interesting application of this diffusion theory is to pre-
dict the adsorption rate of molecules in a diluted solution to
a solid surface. In 1937, Langmuir and Schaefer came up with
an equation to predict the adsorption rate at the short-time
limit (a continuous model).13 Langmuir and Schaefer obtained
adsorption kinetics by directly integrating Fick’s second law equa-
tion at a surface, assuming to absorb any molecules that have
“crossed” it.13,14 The time-dependent concentration gradient at the
surface is

(
∂c
∂t
)

s
=
−DAcb
√

πDt
. (4)

Integrating this equation over time, Langmuir and Schaefer gave the
following equation:13

Γ(t) = 2Acb

√

Dt
π

, (5)

where Γ(t) (unit mol) is the number of molecules adsorbed on an
area of surface A (unit m2) at time t (s), cb (mol m−3) is the concen-
tration of the adsorbate in the bulk solution, and D is the diffusion
constant (m2 s−1).

In 1946, Ward and Tordai added a back-diffusion term in the
equation to account for the adsorption during the longer period
(Fig. 1),14

Γ(t) = 2Acb

√

Dt
π
− A

√

D
π ∫

√
t

0

c(τ)
√

t − τ
dτ, (6)

where c(τ) is the sub-surface molar concentration of the adsorbate
near the surface (mol m−3) and τ is a dummy variable with the unit
of time (s).

Because our current measuring techniques, especially various
chemical imaging methods, have discrete integration times,4,6,9,15–24

finding the correlation between the continuous and discrete solu-
tions of adsorption is important. The difficulty of understanding lies
in the self-similar fractal nature of diffusion and its probability den-
sity function. From a finite-difference point of view, the broadening
of the ensemble diffusion profile is a combination of the broaden-
ing of a smaller fraction of the earlier profiles (Fig. 2). This creates a
question on directly using the combined ensemble curves [Eq. (2)]
to calculate the adsorption probability of a molecule from the bulk
to the surface. Non-Gaussian diffusion is often observed in a con-
fined space or near a surface further complicated the problem.7,16

The adsorption of the molecules is greatly affected by the reabsorp-
tion of the reflected molecules.8 It is becoming important for us
to re-evaluate the theory of adsorption under ideal conditions to

FIG. 2. Self-similar fractal nature of the ensemble 1D diffusion expressed with
the Crank–Nicolson method. Localized molecules at time 0 diffuse into a Gaus-
sian concentration profile at desecrated time τ over space x. Subgroups of these
molecules (two examples are colored red and blue) then further diffuse into the
profiles at time 2τ, where combining all molecules gives the black probability pro-
file [Eq. (2)]. At time 2τ, a subgroup of the blue molecules is labeled in green, which
further diffuses into the green profile at time 3τ. This process continues until time
t of interest. If τ is further divided into a smaller fraction of time τ′, a self-similar
process evolves between the discrete times of nτ and nτ′.
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reduce the difficulty in building or understanding more complicated
models.

In this report, we are comparing this theory with the results
of Monte Carlo simulations to revisit the correlation between the
continuous theoretical models with the discrete simulation results.25

An additional task of the comparison is to gain insights into a
gap between the theory and experiments.24,26–32 The Ward–Tordai
(WT) equation is widely used to measure the effective diffusion
constant from the experimental data.14,32 However, the effective dif-
fusion constant is often several orders of magnitude different from
the value predicted by the Stoke–Einstein equation.14,32 These com-
plexities have limited the applications of the Ward–Tordai equation
[Eq. (5)] in many fields, such as chemistry, biochemistry, biophysics,
biotechnologies, and chemical engineering.29,30 For example, it is
critical to predict how long it takes for a drug molecule to be
adsorbed on the surface of a cell and how long it takes to diffuse
to the target binding site inside a cell. It is also important to predict
how long we should wait for a typical biosensing platform, such as a
glucose sensor and a surface plasmon resonance sensor. Predicting
the diffusion of a molecule to the surface is also essential to calculate
the corrosion rate of a pipe and the reaction rates in a heterogeneous
catalytic system.

RESULTS AND DISCUSSION

In a typical measurement, we often monitor the accumulated
molecule adsorbed on the surface with a time resolution τ as the
integration time of each measurement step, e.g., a frame of a movie.
Assuming the locations of the molecules are known at the beginning
of each frame, whose diffusion probabilities will create broadening
profiles described by Eq. (2) by replacing the t with ∆t = τ (Fig. 3).
If we integrate the error functions of all these profiles in the bulk
solution (Fig. 3 and supplementary material), this will represent the
adsorption simulated using the same discrete-time resolution,

Γ(in Δt) = Acb

√

DΔt
π

. (7)

Comparing Eq. (5) with Eq. (7), we can see that the discrete
solution has a two-fold reduction in predicting the adsorption by

FIG. 3. (a) A simple method in obtaining the adsorption rate is by integrating the
overall probability function and ignoring the fractal nature of the diffusion. Snapshot
of particles (dots) showing at their origins and scheme of their 1D diffusing PDFs
(Gaussian) over space at time Δt (colored curves). The probability of each particle
hitting an imaginary interface perpendicular to its diffusing direction is shown in the
red-colored error functions ignoring its fractal nature and the mirror effect. (b) A
scheme to integrate all the error functions.

ignoring the fractal diffusion that happens within ∆t. When we
zoom in the time of the frame at when a molecule hits the surface, the
probability function collapses into a binary state: it either adsorbs,
which truncates the average PDF, or it reflects, which increase the
probability of the adsorption in the next moment by the same
amount as the truncated error function. We can call this doubling
a “mirror effect,” which analogies to Zeno’s paradoxes. As such,
the overall probability of adsorption is twice the sum of the error
functions shown in Fig. 3,

Γ(in Δt) = 2Acb

√

DΔt
π

. (8)

Equation (5) assumes that the adsorption continues from frame to
frame and the concentration gradient near the surface continuously
evolves (the concentration decreases over time since the molecules
are absorbed by the surface), while Eq. (8) assumes that the concen-
tration gradient evolves during the single frame and then recovers to
the original at the beginning of the next frame. Equation (8) can be
used to predict the number of collisions of the molecules to a non-
stick surface with care being taken for choosing the length of ∆t. The
average rate of solute colliding the wall measured in ∆t is

⟨r⟩(meausred in Δt) = 2Acb

√

D
πΔt

. (9)

Equation (9) is confusing that the rate of collision depends on the
observation time. As such, we run Monte Carlo simulations to repro-
duce the result of Eq. (8) on a reflective surface and Eq. (5) on an
adsorptive surface.

Figure 4 shows Monte Carlo simulations of molecules moving
in a 1D space that bounced/reflected from both ends. Equation (7) is
reproduced from the Monte Carlo simulation using a single PDF.
Equation (8) is reproduced by binning >1000 simulation steps to
mimic the finer fractal diffusion by combining the PDFs with sub-
frame resolution. The time-dependent collision rate is confirmed to
cause by the repetitive collision of the same molecule in a measuring
cycle if observed at a finer time resolution. A real mirror effect, dou-
bling crossing probability, is also observed at an imaginary interface
in the bulk. See the supplementary material for a discussion of Fig. 4
results.

Figure 5 shows Monte Carlo simulations of molecules moving
in a 1D space that bounced/reflected from one end and adsorbed
on the other. Because one adsorption per simulated step has been
satisfied in such a simulation, no binning is required to reproduce
the adsorption kinetics predicted by Eq. (5). We can also visualize
the evolution of the concentration gradient near the adsorptive sur-
face and the bulk over time. This gradient is originally rationalized
in developing the Langmuir–Schaefer and Ward–Tordai equations
that the adsorption rate drops over time.

Comparing the two simulations in Figs. 4 and 5, a confusing
question raises: During a discrete measurement, what ∆t one should
choose to calculate the “initial” rate of the adsorption? The initial
rate is commonly used in the kinetic analysis in the literature. During
the first discrete measuring cycle, time 0 − Δt, do we consider an
evolving sub-surface-bulk concentration gradient or do we consider
a uniform concentration across the bulk as time 0?
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FIG. 4. Metropolis Monte Carlo simulation of 1D diffusive molecules in [(a) and (b)]
a cylindrical volume that bounces the molecules at both ends. (a) The trajectory of
a randomly chosen molecule over time. (b) Averaged number of molecules collide
with the walls (wall, blue), passing the interface from one direction (cr-d, red), or
either direction (cr-nd, yellow) within the binned observation time. Multiple colli-
sions from the same molecule in one cycle are counted once. The number in the y
axis is normalized to the predicted values using Eq. (7).

We can do a mind experiment with molecules aligned perfectly
in space shown in Fig. 6. To maintain the same molecular distribu-
tion within the time Δt, the average location of the molecule should
be the same as the distance between two molecules, i.e., the net effect
is just switch positions during this time,

d0 =
1

3
√

cb
=
∫

∞
0 ze

−z2

4DΔt dz

∫

∞
0 e

−z2
4DΔt dz

=

√

4DΔt
π

, (10)

where d0 and z are shown in Fig. 6. Thus, the characteristic inte-
gration time ∆tc to calculate the average adsorption rate with no
sub-surface concentration gradient is

Δtc =
π

4DCb
2/3 . (11)

Thus, the average initial adsorption rate can be calculated by Eq. (9),

⟨r⟩ = 2Acb

√

D
πΔtc

= 4π−1Acb
4/3D. (12)

FIG. 5. Metropolis Monte Carlo simulation of 1D diffusive molecules in a cylindrical
volume that bounces on the ceiling but “absorbs” on the floor. (a) The number of
molecules adsorbed on the floor over time overlaid with the predicted values using
Eq. (5). (b) Molecular concentration gradient evolving in the rod volume over time.

This equation has the correct unit s−1 for the dimensional analysis
and is consistent with another calculation, assuming the molec-
ular exchanging time ∆tc is the average adsorption time for the
characteristic surface area d0

2. That is,

⟨r⟩ =
A
d2

0

1
Δtc
= 4π−1Acb

4/3D. (13)

In short, ∆tc is the characteristic diffusion-limit time for the
adsorption. Shorter than this time, the high average hitting rate and
the low total number of adsorptions predicted by Eqs. (8) and (9)
are due to the isolated but repetitive collision of the same molecules
on the surface. Longer than this time, the same molecule might have
diffused away beyond the first nearby layer and diffused back to the
surface, which should have been counted as “different” molecules if
the sub-surface concentration has been maintained, i.e., Eq. (9) has
lower estimated the collision frequency longer than this time. Thus,
at the very beginning of the adsorption, ∆tc is the time between the
molecules that have just collided with the surface and diffused away
to the first nearest neighbor layer.

Equation (13) derived from the single-molecule approach is
consistent with the results from the ensemble method. Equation
(13) predicts values that are consistent with the diffusion-limited
steady-state flux of Pt nanoparticles on an ultramicroelectrode
(UME).33 When diameter of UME is r = 10 μm, cb = 25 pM, and
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FIG. 6. Scheme of finding characteristic Δt to calculate the adsorption frequency
when the sub-surface concentration is the same as the bulk concentration, i.e., the
short-time limit right after a fresh surface is exposed to the solution.

D = 1 × 10−12 m2 s−1, the critical adsorption rate is calculated as
0.37 s−1. This rate is consistent with the calculated value as 0.4 s−1

using the semiempirical steady-state flux equation.33,34

The 4/3-order dependence of rate on concentration is very
weird, and I initially also think it is wrongly derived. For the adsorp-
tion, Eq. (9) already shows that it should be the first-order dependent
on the concentrations; thus, the 4/3-order dependence in Eq. (13)
is only for the initial rate at a short period when the symmetry is
just broken by introducing the plane in the solution. It is unlikely
to observe this dependence in a real adsorption experiment when
a concentration gradient will develop. It is a useful initial assess-
ment of the order of rate that is independent of the observation
integration time, especially for experiments on a system with a small
absorption area surrounded by a much larger inactive area and/or
with a fast flow rate.4,6,7,9,23,25,35–38 However in the bulk solution, the
4/3-order dependence of the diluted concentration on the collision
order is surprising. In the physical chemistry textbooks, first-order
dependence for high concentration gas reaction is supported by the
collision theory, where collision frequency is a first-order function
of concentration. This fraction order is consistent with previous
simulations on the fractal nature of reaction kinetics that obtains
abnormal reaction orders for simple reactions.39

In the literature, the Ward–Tordai equation often gives sev-
eral orders of magnitude differences between the measured effective
diffusion constant and that predicted by the Stokes–Einstein equa-
tion. Thus, it is interesting to simulate the adsorption of molecules
on a surface using the typical Langmuir surface adsorption model.
We are simulating two systems, self-assembled monolayers (SAMs)
and binding of molecules to a patterned surface. SAMs are used in
many fields for surface functionalization and the latter is often used
in biosensing systems, where both need a simple equation to predict
the adsorption kinetics.

The Langmuir adsorption of SAM without energy barriers is
simulated using the Gillespie algorithm, a computer-based Monte
Carlo simulation method.40,41 Specifically, the bulk solute molecules

FIG. 7. Monte Carlo (Gillespie algorithm) simulation of the formation of SAMs. (a)
Simulation scheme of SAMs. (b) A selected simulating curve (green) overlapped
with three fitting and calculated curves explained in the main text. (c) The ratio
between the fitted rate constant vs the predicted rate constant with an ideal stirring
for different bulk concentrations was simulated.

with simulated 1D diffusion adsorb on empty sites and are rejected
on occupied sites on the surface [Fig. 7(a)]. A Ward–Tordai
(WT) adsorption curve is observed with both the adsorption and
back-diffusion simulated [Fig. 7(b), green curve]. These simula-
tions are empirically consistent with typical experiments on SAMs,
mostly saturate in a few minutes under similar conditions.42 The
Ward–Tordai curve can be approximated to an exponential decay
function with deviations at the early and late part of the curve,

Γ1 =
A
a
(1 − e−k1t

), (14)

where A is the total surface area simulated, a is the average size of
a binding site, t is time, and k is the effective rate constant on the
surface. The effective rate constant can be pulled out from fitting
and labeled as k1, and the fitted curve is labeled Γ1 [Fig. 7(b), orange
curve].

If an ideal stirring has been introduced that maintains the bulk
concentration with no gradient at the front edge of the surface, an
exponential decay curve Γ2 with the same model as Γ1 but with much
faster rate constant k2 than k1 would have been observed [Fig. 7(b),
red curve] with the rate constant,

k2 = 4π−1acb
4/3D. (15)

Surprisingly, Eq. (5) is often considered short-time limited in
the literature and overlaps with the simulated data most of the
time until ∼80% of saturation [Figs. 7(b), Γ3]. Equation (5) has not
considered the shrinking active binding area of the SAMs (due to
increasing adsorption coverage) and the slowing-down evolution
speed of the concentration gradient (due to the back-diffusion) near
the surface over time. Coincidentally, these two effects cancel with
each other during most of the adsorption time.

The difference larger than three orders of magnitude between
k1 and k2 [Fig. 7(c)] explains the over six orders of magnitude
variations of the effective diffusion constant calculated from the
Ward–Tordai equation on experimental data, which is still con-
fusing nowadays in the literature.14,32 We can speculate an answer
from the simulation results that because convection, flow, and stir-
ring naturally occur under typical experimental conditions, greatly
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changing the formation of the concentration gradient near the
surface.

We can simulate the initial slope predicted by Eq. (9) with
a much higher consistency with experimental results than SAMs
for a special case. We simulate a typical biosensing system on a
patterned surface and/or under significant flow (Fig. 8) when the
sub-surface concentration of the solution does not change much
throughout adsorption. This is simulated with a 3D diffusion model
(see the supplementary material for detailed derivation and simu-
lation conditions). Figure 8(a) shows the simulation scheme with a
10-nm-radius adsorption spot (with 150 binding sites, each occupies
∼2 nm2) on the wall of a 1000-μm3 cubic volume. The rate constants
of Fig. 8(b) are fitted with Eq. (14) and shown in Fig. 8(c).

By replacing the ensemble area with the single-molecule
binding area, Eq. (9) predicts rate constants,

k3 = 2acb

√

D
πΔt

, (16)

where a (m2) is the area of each binding site, cb (# m−3) is the bulk
concentration, D (m2 s−1) is diffusion constant, and ∆t is the step
time 0.001 s.

FIG. 8. Monte Carlo (Gillespie algorithm) simulation of biosensing on a patterned
surface. (a) Scheme for the biosensing platform simulated a 10-nm radius circle
with 150 binding sites. Immobilized binding sites are brown and diffusive probes
are blue. (b) Adsorption curves with different bulk concentrations. The black curve
is the fitting overlaid on the colored belt representing the standard deviation of ten
simulations. (c) Fitted rate constants times 2 (yellow dots) follow a linear corre-
lation with the concentration. Rate constants k3 are calculated from Eq. (16) and
overlaid as the blue line. (d) The ratio between two times the fitted rate constants
(yellow dots) and the predicted rate constants over different bulk concentrations
simulated (k3 are normalized to 1 shown by the dashed blue line). Derivation of
the adsorption equation from 1D to 3D is detailed in the supplementary material.

Twice the simulated binding constant k1 [Eq. (14)] is compared
to the theoretical values k3 [Eq. (16)] [Fig. 8(d)]. Twice is chosen
to correct the fractal diffusion being ignored during the simula-
tion when the majority of the surface is reflective. We can conclude
from the consistency between the two values that Eq. (9) holds
for such simulations [Fig. 8(d)], suggesting that this equation is
applicable in biosensing and drug delivery fields. These simulations
are consistent with experimental results reported in the literature
where single-molecule adsorption of dye molecules on immobilized
DNA is measured43 or protein-surface adsorption within an order of
magnitude.24

These simulations also suggest that the reverse argument is
true, that is, for binding of diffusive solute molecules to isolated
targets on a surface, Eq. (5) can be used to measure the diffusion
constant of the solute, overcoming the several orders of magnitude
variation observed in the measurements of SAMs.

CONCLUSIONS

In summary, the surface adsorption kinetics represented by
the Langmuir–Schaefer equation and the Ward–Tordai equation
has been reproduced using Monte Carlo simulations. The fractal
nature of diffusion is examined and simulated. A unique conclu-
sion suggested by the single-molecule approach is that there is a
characteristic integration time ∆tc for the equations, which has
never been a consideration for the ensemble approaches, a miss-
ing piece of the Ward–Tordai equation. That is, the characteristic
time distinguishes the overestimated multiple collisions from the
same molecule shorter than this time and the lower estimation of
the collisions longer than this time. We can draw some interesting
specific conclusions from the Monte Carlo simulations. For exam-
ple, when we measure the collision events of probe molecules in the
bulk solution to a small target area on a flat surface, the frequency
of seeing such events is dependent on the measuring time resolution
and how the surface reacts with the probes. With the results obtained
from the simulations, we may start to use the simple continuous and
discrete equations carefully in various fields, such as calculating the
collision frequency of molecules in a diluted gas or liquid solution,
membrane penetration, self-assembly, and biosensing. Wide use of
these equations in these fields has not yet been seen in the literature.
It may also find applications in finer simulations such as molecu-
lar dynamics simulations to skip non-interested mass transportation
steps among the solvent. More careful simulations and experiments
should be carried out in the future to further test the limit of these
equations. Nevertheless, I hope you agree that the single-molecule
approach pictured in this report is easier to understand than the
ensemble equations of diffusion.

METHODS

The Monte Carlo simulation is carried out on a laptop equipped
with an Intel i7 CPU (2.2 GHz) and 16 Gb of memory. A basic
version of MATLAB 2014b is used for all simulations. A single cen-
tral processing unit (CPU) is used for all simulations. A previously
coded exponential regression fitting algorithm fitNguess44 (Github)
is used to fit the curves. The two major random functions to gen-
erate the step motion of each molecule are from MATLAB, rand()
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creating evenly distributed random numbers, and randn() generat-
ing Gaussian distributed random numbers. Detail parameters and
settings for the simulations are listed in the supporting information.
The single-molecule diffusion of the solute molecules in confined
semi-infinite volumes and their collisions to the walls are simulated.
Inter-molecular collisions are not simulated. Typical computer time
used for the simulations is from a few seconds to a few hours. See the
last sections of the supplementary material for two example source
codes in MATLAB.

SUPPLEMENTARY MATERIAL

See the supplementary material for simulation details, deriva-
tions, and example MATLAB source codes for 1D and 3D
simulations. Other source codes and data are available upon
request.
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C. Vogt, P. C. A. Bruijnincx, and B. M. Weckhuysen, J. Am. Chem. Soc. 139, 13632
(2017).
5C.-S. Liao, M. N. Slipchenko, P. Wang, J. Li, S.-Y. Lee, R. A. Oglesbee, and J.-X.
Cheng, Light: Sci. Appl. 4, e265 (2015).

6J. W. Ha, W. Sun, A. S. Stender, and N. Fang, J. Phys. Chem. C 116, 2766 (2012).
7A. V. Chechkin, F. Seno, R. Metzler, and I. M. Sokolov, Phys. Rev. X 7, 021002
(2017).
8D. Wang and D. K. Schwartz, J. Phys. Chem. C 124, 19880 (2020).
9Y. Zhong and G. Wang, Annu. Rev. Anal. Chem. 13, 381 (2020).
10R. Brown, Philos. Mag. 4, 161 (1828).
11J. T. Edward, J. Chem. Educ. 47, 261 (1970).
12P. Mörters and Y. Peres, Brownian Motion (Cambridge University Press, 2010).
13I. Langmuir and V. J. Schaefer, J. Am. Chem. Soc. 59, 2400 (1937).
14A. F. H. Ward and L. Tordai, J. Chem. Phys. 14, 453 (1946).
15T. Schmidt, G. J. Schutz, W. Baumgartner, H. J. Gruber, and H. Schindler, Proc.
Natl. Acad. Sci. U. S. A. 93, 2926 (1996).
16H. Wu and D. K. Schwartz, Acc. Chem. Res. 53, 2130 (2020).
17D. Wang, H. Wu, and D. K. Schwartz, Phys. Rev. Lett. 119, 268001 (2017).
18D. F. Kienle and D. K. Schwartz, J. Phys. Chem. Lett. 10, 987 (2019).
19X.-H. Xu and E. S. Yeung, Science 275, 1106 (1997).
20J. T. Cooper and J. M. Harris, Anal. Chem. 86, 7618 (2014).
21E. M. Peterson and J. M. Harris, Anal. Chem. 82, 189 (2010).
22E. M. Peterson and J. M. Harris, Langmuir 29, 8292 (2013).
23L. Zhao, Y. Zhong, Y. Wei, N. Ortiz, F. Chen, and G. Wang, Anal. Chem. 88,
5122 (2016).
24H. Shen, L. J. Tauzin, W. Wang, B. Hoener, B. Shuang, L. Kisley, A. Hoggard,
and C. F. Landes, Anal. Chem. 88, 9926 (2016).
25C. F. Landes, A. Rambhadran, J. N. Taylor, F. Salatan, and V. Jayaraman, Nat.
Chem. Biol. 7, 168 (2011).
26J. F. Baret, J. Phys. Chem. 72, 2755 (1968).
27J. Liu and U. Messow, Colloid Polym. Sci. 278, 124 (2000).
28J. Liu, P. Li, C. Li, and Y. Wang, Colloid Polym. Sci. 287, 1083 (2009).
29X. Li, R. Shaw, G. M. Evans, and P. Stevenson, Comput. Chem. Eng. 34, 146
(2010).
30J. Hristov, J. King Saud Univ. - Sci. 28, 7 (2016).
31A. V. Nguyen, C. M. Phan, and G. M. Evans, Int. J. Miner. Process. 79, 18
(2006).
32O. S. Deshmukh, D. van den Ende, M. C. Stuart, F. Mugele, and M. H. G. Duits,
Adv. Colloid Interface Sci. 222, 215 (2015).
33X. Xiao, F.-R. F. Fan, J. Zhou, and A. J. Bard, J. Am. Chem. Soc. 130, 16669
(2008).
34J. B. Allen and R. F. Larry, Electrochemical Methods Fundamentals and
Applications, 2nd ed. (John Wiley & Sons, 2001).
35A. T. Krummel, S. S. Datta, S. Münster, and D. A. Weitz, AIChE J. 59, 1022
(2013).
36J. Kärger, D. M. Ruthven, and D. N. Theodorou, Diffusion in Nanoporous
Materials (John Wiley & Sons, 2012).
37L. Kisley, R. Brunetti, L. J. Tauzin, B. Shuang, X. Yi, A. W. Kirkeminde, D. A.
Higgins, S. Weiss, and C. F. Landes, ACS Nano 9, 9158 (2015).
38C. Dutta, L. D. C. Bishop, J. Zepeda O, S. Chatterjee, C. Flatebo, and C. F.
Landes, J. Phys. Chem. B 125, 3438 (2021).
39R. Kopelman, Science 241, 1620 (1988).
40D. T. Gillespie, J. Phys. Chem. 81, 2340 (1977).
41D. T. Gillespie, Annu. Rev. Phys. Chem. 58, 35 (2007).
42N. Camillone, Langmuir 20, 1199 (2004).
43J. R. Pyle and J. Chen, Beilstein J. Nanotechnol. 8, 2296 (2017).
44J. Chen, J. R. Pyle, K. W. Sy Piecco, A. B. Kolomeisky, and C. F. Landes, J. Phys.
Chem. B 120, 7128 (2016).

AIP Advances 12, 015318 (2022); doi: 10.1063/5.0064140 12, 015318-7

© Author(s) 2022

https://scitation.org/journal/adv
https://www.scitation.org/doi/suppl/10.1063/5.0064140
https://www.scitation.org/doi/suppl/10.1063/5.0064140
https://www.scitation.org/doi/suppl/10.1063/5.0064140
https://www.scitation.org/doi/suppl/10.1063/5.0064140
https://doi.org/10.1021/acs.chemrev.6b00815
https://doi.org/10.1039/c6sm01153e
https://doi.org/10.1021/jacs.7b07139
https://doi.org/10.1038/lsa.2015.38
https://doi.org/10.1021/jp210423a
https://doi.org/10.1103/physrevx.7.021002
https://doi.org/10.1021/acs.jpcc.0c05834
https://doi.org/10.1146/annurev-anchem-091819-100409
https://doi.org/10.1080/14786442808674769
https://doi.org/10.1021/ed047p261
https://doi.org/10.1021/ja01290a091
https://doi.org/10.1063/1.1724167
https://doi.org/10.1073/pnas.93.7.2926
https://doi.org/10.1073/pnas.93.7.2926
https://doi.org/10.1021/acs.accounts.0c00408
https://doi.org/10.1103/physrevlett.119.268001
https://doi.org/10.1021/acs.jpclett.9b00004
https://doi.org/10.1126/science.275.5303.1106
https://doi.org/10.1021/ac5014354
https://doi.org/10.1021/ac901710t
https://doi.org/10.1021/la400884t
https://doi.org/10.1021/acs.analchem.5b04944
https://doi.org/10.1021/acs.analchem.5b04081
https://doi.org/10.1038/nchembio.523
https://doi.org/10.1038/nchembio.523
https://doi.org/10.1021/j100854a011
https://doi.org/10.1007/s003960050021
https://doi.org/10.1007/s00396-009-2068-2
https://doi.org/10.1016/j.compchemeng.2009.08.004
https://doi.org/10.1016/j.jksus.2015.03.008
https://doi.org/10.1016/j.minpro.2005.11.007
https://doi.org/10.1016/j.cis.2014.09.003
https://doi.org/10.1021/ja8051393
https://doi.org/10.1002/aic.14005
https://doi.org/10.1021/acsnano.5b03430
https://doi.org/10.1021/acs.jpcb.1c01898
https://doi.org/10.1126/science.241.4873.1620
https://doi.org/10.1021/j100540a008
https://doi.org/10.1146/annurev.physchem.58.032806.104637
https://doi.org/10.1021/la030121n
https://doi.org/10.3762/bjnano.8.229
https://doi.org/10.1021/acs.jpcb.6b05697
https://doi.org/10.1021/acs.jpcb.6b05697

